

ALMA MATER STUDIORUM Università di Bologna

September 14-15, 2017, Bologna (Italy)

Improving the intelligibility of a heritage-constrained university room using acoustic treatment and line arrays

Dario D'Orazio, **Giulia Fratoni** (Department of Industrial Engineering, DIN, University of Bologna)

AULA AFFRESCHI

Cultural heritage classroom Philosophy and Literature, University of Bologna Multimedia course *Digital Humanities*

8th ISTD, Sep 14-15 Bologna (IT)

CONTENTS

• Aula Affreschi

• Acoustic qualification (ISO 3382, IEC 60268, DIN 18041)

• Design proposal (numerical simulation)

• Post-operam measurements

AULA AFFRESCHI

• Occupation = 56 people

• Volume = 550 m^3

• Floor area = 84 m^2

ACOUSTIC QUALIFICATION

4 m

6 m

- ISO 3382, IEC 60268
- Omni sound source (ISO 3741)
- Grid of monoaural receivers
- D₂,S spatial decay
- Lp,B background noise

8th ISTD, Sep 14-15 Bologna (IT)

Giulia Fratoni et al. Improving the intelligibility in a university classroom

8 m

ACOUSTIC QUALIFICATION

	Measured mean values	Target values (UNI 11352, BB93, DIN 18041)
C50,3 (dB)	-2.4	≥ 0
STI	0.48	≥ 0.60
Тм,осс (s)	1.20	≤ 0.85

NUMERICAL SIMULATION (ODEON V.12)

	S	α					
		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Plaster and floor	0.05	0.02	0.02	0.03	0.03	0.04	0.05
Furniture	0.60	0.14	0.28	0.35	0.38	0.35	0.28

References for scattering and absorption coefficients: DIN 18041. Calibration: differences between measured and simulated values within JND.

DESIGN PROPOSAL

Passive acoustic

BAFFLES AND REFLECTOR

Active acoustic

LINE ARRAYS

DESIGN PROPOSAL: BAFFLES AND REFLECTOR

Passive acoustic

- The reflector enhances the early reflections
- Vertical baffles decrease the reverberation time

All the devices preserve the architectural value of the space

DESIGN PROPOSAL: BAFFLES AND REFLECTOR

Baffles

Reflector

		S	α					
			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Ver	tical baffles	0.50	0.27	0.42	0.70	0.70	0.70	0.50
Ref	lector	0.50	0.18	0.15	0.03	0.03	0.02	0.02
DEC								-
	8th ISTD, Sep 14-15 Bologna (IT)	Improving the	Giulia Fratoni <i>et al.</i> he intelligibility in a university classroom					10

Improving the intelligibility in a university classroom

DESIGN PROPOSAL: LINE ARRAYS

Line arrays improve the speech intelligibility in each row of the classroom, guiding the direct sound towards the audience area.

Active acoustic

DESIGN PROPOSAL: LINE ARRAYS

Horizontal directivity

8th ISTD, Sep 14-15 Bologna (IT)

Giulia Fratoni et al. Improving the intelligibility in a university classroom

DESIGN PROPOSAL: LINE ARRAYS

Balance between talker and PA system:

line arrays set on normal vocal effort sound pressure level $L_p = 59.5 \text{ dB}$ at 1 meter

POST-OPERAM MEASUREMENTS

8th ISTD, Sep 14-15 Bologna (IT)

RESULTS

	Post-operam mean values	Target values (UNI 11352, DIN 18041, BB93)
C50,3 (dB)	0.1	≥ 0
STI	0.60	≥ 0.60
Тм,осс (s)	0.83	≤ 0.85

Remarks

- The initial acoustic qualification was performed in order to classify the discomfort perceived within Aula Affreschi.
- Numerical simulations were used to calibrate the 3D model and to propose the acoustic correction design.
- Baffles and reflector led to the achievement of speech intelligibility target values provided by technical standards.
- Post-operam measurements showed how the good balance between the talker and PA system allows to reduce the talker's vocal effort and the students' distraction.

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

_] m <u>//</u>___ 8th ISTD ሆ'\ቢ

September 14-15, 2017, Bologna (Italy)

THANK YOU FOR LISTENING!